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1. We treat questions concerning nonnegative harmonic functions
on the upper half-plane, U = {1m z > O}. With the aid of Kjellberg's
lemma [4] a truncation convergence theorem (Theorem 4.1) is obtained.
A corollary (Theorem 4.2) of this theorem leads very simply to Loomis's
converse [5] of the (sectorial limit) Fatou theorem for nonnegative harmonic
functions on U. For important extensions in several directions of Loomis's
work reference is made to the papers of Gehring [1-3] bearing on the subject.

2. Kjellberg's Lemma. This useful lemma may be stated as follows:

LEMMA. Let u, u1 , U2 be nonnegative harmonic functions on a region A
satisfying u ~ U1 + U2 • Then there exist nonnegative harmonic functions t'l ,

V2 on A such that Vi ~ Ui, i = 1,2, and u = VI + ['2'

Proof. Given a subharmonic function w(~ - 00) on A possessing a
harmonic majorant, we let Mw denote the least harmonic majorant of w.
Turning to the situation of the lemma we note that

(u - u2)+ ~ U, Ul •

Hence

so that
o ~ u - M(u - U0+ ~ U2 •

The proof is completed on noting that VI = M(u - U0+ and V2 = U - VI

serve.

3. The Poisson-Stieltjes representation for nonnegative harmonic
functions on U. This standard result may be formulated as follows:

Given u, nonnegative harmonic on U, there exists a unique pair (p, a),
where p is a nonnegative real number and ex is a monotone nondecreasing
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function on the real line R satisfying 0:(0) = 0, o{t) = [o:Ct+) + Ct(t- )]/2,
t E R, such that

1 .+""
u(z) = - j Im(t - Z)-l do:(t) + p 1m Z, Z E U. (3.1)

7T -J)

4. The convergence theorem. Let (u,,)~ be a sequence of nonnegative
harmonic functions on U tending pointwise to u (finite-valued). Let ex be
associated with u in the sense of Section 3 and let (1" be correspondingly
associated with Un . Let a, b satisfy - r::t) < a < b < +wand be such that :x

is continuous at both a and b. We introduce L'n , V by

I .b
v,,(z) = - j Im(t - Z)-l dCl.n(t),

7T a

and

1 rb

v(z) = -, Im(t - Z)-l dcx(t),
7T • a

Z E U. They are, of course, nonnegative harmonic on U. We show

THEOREM 4.1. (vn ) tends to L" uniformly on compact subsets of U.

[It is to be noted that the multiples of 1m z appearing in the representations
of Un and u are without effect as far as the theorem is concerned.]

Proof We show: If (r n) is pointwise convergent, then lim Vn = v. It is
to be observed that here pointwise convergence implies uniform convergence
on compact subsets of U. The pointwise convergence of (v n) may be referred
to the fact that the asserted limit property is valid when (v n) is replaced by
a pointwise convergent subsequence. Let w = lim L"n' At all events, W :'(; u.
Further, lV vanishes continuously at each point of the frontier of U (in the
sense of the topology of the extended plane) not in the segment [a, b].

On replacing [a, b] by a slightly larger segment [A, Bl, A < a < b < B,
we see, thanks to the Poisson-Stieltjes representation for u, that with hI
given by

1 rB
h1(z) = - rm(t - Z)-l d~(t),

7T • A
Z E [I, (4.1)

and h2 = u - hI , hI and h2 are nonnegative harmonic on U. We apply the
Kjellberg lemma to W, hI , h2 • On noting that

for each S in the frontier of U (as above), we conclude by the boundary
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maximum principle that the second term in the Kjellberg representation of w
is O. Hence w ~ hI . By the continuity of C\: at a and b, we obtain w ~ v.

To obtain inequality in the opposite sense, we proceed as follows. We now
take A and B so that a < A < B < b. Since u - w = lim(un - vn) and
each of the functions Un - V n is nonnegative harmonic on U and has limit 0
at each point of the interval (a, b), it follows (from the well-known inequali
ties, paralleling the Harnack inequalities, for nonnegative harmonic functions
on a semicircular disk, which vanish continuously on the diameter) that
u - w vanishes continuously at each point of the interval. On taking hI of
(4.1) with the present A and B and applying the boundary maximum principle
to

[(u - w) + hil - u,

we conclude that hI ~ w. By the continuity of C\: at a and b, it follows that
v ~w.

Hence v = wand the proof of the theorem can now be rapidly completed
with the aid of the observations of the first paragraph of the proof.

Let P denote the set of nonnegative harmonic functions on U. Given a, b
satisfying - 00 < a < b < +00, we consider the map T of P into itself
which assigns to u E P the function

1 JbZ -+ - Im(t - Z)-1 dOlit),
7T a

ZE U,

where (Xu is the monotone function appearing in the Poisson-Stieltjes repre
sentation of u. Understanding that the topology on P is that of uniform
convergence on compact subsets of U, we see that T is continuous at each
u E P for which (Xu is continuous at a and b, thanks to Theorem 4.1 and the
local countable base property of the topology on P.

We are led to the following theorem.

THEOREM 4.2. Suppose that (Xu is contbluouS at a and b. Then
o

is continuous at Uo .
Let lu denote the Radon measure on C[a, bJ, the space of real-valued con

tinuous functions on the segment [a, bJ, defined by

Then the map u -+ lu is continuous at uo , the range topology being the weak*
topology ofC*[a, b], the conjugate space ofC[a, b].
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Proof The first assertion follows on considering the expansion about r:J:)

of Tu extended by Schwarzian reflexion to the complement of [a, b] with
respect to the complex plane and on observing thereupon the continuous
dependence of the coefficient of rm(r1) of this expansion upon u. Account
is to be taken of the fact that for u sufficiently near Uo the extended Tu are
uniformly bounded in some punctured neighborhood of w.

The second assertion may be established by applying the first assertion
to a and x (replacing b), a < x :(; b, such that C:"o is continuous at x, <'-'"'cd
thereupon using approximating sums for entering Riemann-Stieltjes integrals
with points of subdivision taken as points of continuity of (X"o •

5. Loomis's Converse Theorem. This theorem Elay be formulatee
as follows:

THEOREM. Let u EO P possess the finite sectorial limit cat O. Then 0.:/(0) = c:.

Proof We define rp(s), 0 :(; s < +0:::, as foilows: rp(O) is the constant c
on U and !pes) is z ---?- u(sz), Z E U, when 0 < s < + co. Then rp is a continuous
map of its domain into P. We observe that

and

ex",(s)(t) = rxuCst)/s, 0< S < +GJ.

We apply the first assertion of Theorem 4.2, rp(O) taking over the role of Uo •

With a = 0 and b = 1 we obtain

lim Cli.,(S)/S = C,
,.cO

while with a = -1 and b = 0 we obtain

lim rxuC-s)/s = c.
sJ.o

The theorem follows.
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